
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY 
ECE-4710/5710: Computer Hardware Design  Winter 2023 

 

 

1 Instructor: Daniel Llamocca 
TAs: David Stern, Luke Nuculaj 

Laboratory 1 
(Due date: 005: February 1st, 006: February 2nd) 

 

OBJECTIVES 
✓ Implement a Digital System: Control Unit and Datapath Unit. 
✓ Describe Algorithmic State Machine (ASM) charts in VHDL. 
✓ Learn the basics of Microprocessor Design. 
 

VHDL CODING 
✓ Refer to the Tutorial: VHDL for FPGAs for parametric code for: Register and ALU. 
 

FIRST ACTIVITY: DESIGN OF A SMALL MICROPROCESSOR (70/100) 
DESIGN PROBLEM 
▪ Implement the following 4-bit microprocessor: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
▪ Control Circuit: 

✓ The 5-bit instruction, 
provided by IR, is captured 

by the control circuit when 
w=1. The instruction is then 

processed, and it finishes 
when done is asserted. A 

new instruction can then be 
provided in the next clock 
cycle. 

 
 
  

R1
E

E
_
R
1

R0
E

E
_
R
0

A
E

E
_
A

G
E

ALU

CONTROL CIRCUIT

o
p

4

w

IR
5 done

BUS

B
E
_
G

4
0

1

2

3

2

4

4

4

IN
E

SWITCHES

OUT
E

LEDS

4

E
_
I
N

E
_
O
U
T

S
M

Rx

Ex

DECODER

with

enable

0

1

w

E

E_R0

E_R1

FSM done

w

f
3

E
_
G

E
_
I
N

E
_
O
U
T

o
p

4

QD

E

IR IRq

IRq = |f2|f1|f0|Ry|Rx|

E
_
A

E_IR

5 5

opcode

E
_
I
R

Ex Ry

S
M

Rx

CONTROL

CIRCUIT 2

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html


ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY 
ECE-4710/5710: Computer Hardware Design  Winter 2023 

 

 

2 Instructor: Daniel Llamocca 
TAs: David Stern, Luke Nuculaj 

▪ Instruction Set: 
✓ Instruction: |f2|f1|f0|Ry|Rx| 

 

F Operation Function 
000 load IN IN  Switches 

001 load Rx, IN Rx  IN 

010 copy Rx, Ry Rx  Ry 

011 add Rx, Ry Rx  Rx + Ry 

100 add Rx, IN Rx  Rx + IN 

101 xnor Rx, Ry Rx  Rx XNOR Ry 

110 inc Rx Rx  Rx + 1 

111 load OUT, Rx OUT  Rx 

 
✓ Instruction examples: 

 load R1,IN      IR = 001X1 

 add R0,R1       IR = 01110 

 

▪ Control Circuit: FSM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

S1

resetn=0

1

0

E_IN  1

SM  00, Ex  1

000

001

010

SM  1&Ry ,

E_G  1

op  0110

SM  01,

Ex  1

S3a

S3b

SM  1&Rx

E_A  1

w

f

E_IR  1

011 100 101

110

111

SM  1&Ry ,

Ex  1

SM  00,

E_G  1

op  0110

SM  01

Ex  1

S4a

S4b

SM  1&Rx

E_A  1

SM  1&Ry ,

E_G  1

op  1111

SM  01,

Ex  1

S5a

S5b

SM  1&Rx

E_A  1

SM  01

Ex  1

S6

SM  1&Rx,

op  0100

E_G  1

SM  1&Rx,

E_OUT  1

S7

0 1

w

done  1

S2



ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY 
ECE-4710/5710: Computer Hardware Design  Winter 2023 

 

 

3 Instructor: Daniel Llamocca 
TAs: David Stern, Luke Nuculaj 

▪ Arithmetic Logic Unit (ALU): 
sel Operation Function Unit 
0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

y <= A 

y <= A + 1 

y <= A - 1 

y <= B 

y <= B + 1 

y <= B – 1 

y <= A + B 

y <= A – B 

Transfer ‘A’ 

Increment ‘A’ 

Decrement ‘A’ 

Transfer ‘B’ 

Increment ‘B’ 

Decrement ‘B’ 

Add ‘A’ and ‘B’ 

Subtract ‘B’ from 'A' 

Arithmetic 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

y <= not A 

y <= not B 

y <= A AND B 

y <= A OR B 

y <= A NAND B 

y <= A NOR B 

y <= A XOR B 

y <= A XNOR B 

Complement ‘A’ 

Complement ‘B’ 

AND 

OR 

NAND 

NOR 

XOR 

XNOR 

Logic 

 

PROCEDURE 
▪ Vivado: Complete the following steps: 

✓ Create a new Vivado project. Select the corresponding Artix-7 FPGA device (e.g.: the XC7A50T-1CSG324 FPGA device 
for the Nexys A7-50T board). 

 
✓ Write the VHDL code for the given circuit. Synthesize your circuit to clear syntax errors. 

 Suggestion: Use the Structural Description: Create a separate .vhd file for the components (register, ALU, MUX, 

Control Circuit) and interconnect them all in a top file. The Control Circuit and ALU have their own components. 
 

✓ Write the VHDL testbench to simulate your circuit. 
 Your testbench must test the following Assembly program (use a 100 MHz input clock with 50% duty cycle): 

load IN;  IN  0110 (SWs = 0110) 

load R0, IN;  R0  0110 

copy R1, R0;  R1  0110, R0  0110 

inc R0;  R0  0111 

add R1, R0;  R1  0111 + 0110 = 1101 

xnor R1, R0;  R1  1101 xnor 0111 = 0101 

load OUT, R1; OUT  0101 
 

 This timing diagram depicts an example where two instructions are loaded. 
 
 
 
 
 
 
 

 
 

✓ Perform Behavioral Simulation and Timing Simulation of your design. Demonstrate this to your TA. 

 Behavioral Simulation: To help debug your circuit, add internal signals (e.g.: state, R0, R1, A) to the waveform view. 

 
✓ I/O Assignment: Create the XDC file associated with your board. 

 Suggestion (Nexys A7-50T/A7-100T, Nexys 4/DDR): 

Board pin names CLK100MHZ CPU_RESET SW8-SW5 SW4-SW0 BTNC LED4 LED3-LED0 

Signal names in code clock resetn IN IR w done OUT 

 
 Note: synchronous circuits always require a clock and reset signal. 

 Reset signal: As a convention in this class, we use active-low reset (resetn). Thus, we tie resetn to the active-

low push button CPU_RESET of the Nexys A7-50T/A7-100T, Nexys 4/DDR board. 

 Clock signal: Like other signals in the XDC file, uncomment the lines associated with the clock signal and replace 
the signal label with the name used in your code. In addition, there is parameter -period that is set by default 

to 10.00. This is the period (in ns) that your circuit should support. 

 Nexys A7-50T: In these lines, replace the label CLK100MHZ with the signal name you use in your code (clock): 
set_property -dict { PACKAGE_PIN E3    IOSTANDARD LVCMOS33 } [get_ports { CLK100MHZ }]; 

create_clock -add -name sys_clk_pin -period 10.00 -waveform {0 5} [get_ports {CLK100MHZ}]; 

00110 00000

clock

resetn

w

IR 00000 00011 00000



ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY 
ECE-4710/5710: Computer Hardware Design  Winter 2023 

 

 

4 Instructor: Daniel Llamocca 
TAs: David Stern, Luke Nuculaj 

SECOND ACTIVITY: TESTING (30/100) 
▪ In order to properly test the microprocessor, we need the avoid 

mechanical bouncing on the pushbutton for input 𝑤. Connect the 

debouncer circuit (use the given files: mydebouncer.vhd, 

my_genpulse_sclr.vhd) on the input 𝑤. 

▪ Note that you do not need to simulate the circuit that includes the 
debouncer. 

 
✓ Generate and download the bitstream on the FPGA and test the Assembly Program. Demonstrate this to your TA. 

 To test the Assembly program, load each instruction via the input IR and use the input w to feed the instruction. 

 
 
 

SUBMISSION 

▪ Submit to Moodle (an assignment will be created): 
✓ This lab sheet (as a .pdf) completed and signed off by the TA (or instructor). 
✓ (As a .zip file) All the generated files: VHDL code, VHDL testbench (for the uP 

block), and XDC file. DO NOT submit the whole Vivado Project. 
 Your .zip file should only include one folder. Do not include subdirectories. 
 It is strongly recommended that all your design files, testbench, and 

constraints file be located in a single directory. This will allow for a smooth 
experience with Vivado. 

 You should only submit your source files AFTER you have demoed your work. 
Submission of work files without demoing will be assigned NO CREDIT. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

TA signature: ________________________________  Date: __________________________ 

uP
done

LEDSSWITCHES

w

IR
5

w

Debouncer

lab1

top.vhd

lab1.xdc

top_tb.vhd

Design files
for circuit

my_rege.vhd

busmux.vhd

...

Testbench file

Constraints file


	Objectives
	VHDL Coding

	First Activity: Design of a Small Microprocessor (70/100)
	Design Problem
	Procedure

	Second Activity: Testing (30/100)
	Submission

